Sovi AI

Sovi AI

Photo question helper

part 5 of 5 identify the domain, range, intercept, and asymptote of the…

- Domain: All real numbers - Range: $\{y \mid y>0\}$ - Y-intercept: $5$ - Asymptote: $y=0$ - End behavior: As $x$ approaches $-\infty$, the values of $f(x)$ approach $0$, and as $…

Category: calculus Updated: 2026-02-09

Question

part 5 of 5
identify the domain, range, intercept, and asymptote of the exponential function. then describe the end behavior.
$f(x)=5\\cdot8^{x}$

o d. $\\{y|y< \\ \\}$
o e. all real numbers

the y-intercept of the function $f(x)=5\\cdot8^{x}$ is 5.
(type an integer or a decimal.)
the asymptote of $f(x)=5\\cdot8^{x}$ is $y=0$.
(type an equation.)
as x approaches $-\\infty$, the values of f(x) approach $\\square$, and as x approaches $\\infty$, the values of f(x) approach $\\square$.

Solution Steps

  1. Understand the question

    part 5 of 5
    identify the domain, range, intercept, and asymptote of the exponential function. then describe the end behavior.
    $f(x)=5\\cdot8^{x}$

    o d. $\\{y|y< \\ \\}$
    o e. all real numbers

    the y-intercept of the function $f(x)=5\\cdot8^{x}$ is 5.
    (type an integer or a decimal.)
    the asymptote of $f(x)=5\\cdot8^{x}$ is $y=0$.
    (type an equation.)
    as x approaches $-\\infty$, the values of f(x) approach $\\square$, and as x approaches $\\infty$, the values of f(x) approach $\\square$.

  2. Explanation

    Step1: Find domain of $f(x)=5\cdot8^x$

    Exponential functions accept all real $x$, so domain is all real numbers.

    Step2: Find range of $f(x)=5\cdot8^x$

    $8^x>0$ for all real $x$, so $5\cdot8^x>0$. Range is $\{y \mid y>0\}$.

    Step3: Confirm y-intercept

    Set $x=0$: $f(0)=5\cdot8^0=5\cdot1=5$.

    Step4: Confirm horizontal asymptote

    As $x\to-\infty$, $8^x\to0$, so $f(x)\to0$. Asymptote is $y=0$.

    Step5: Describe end behavior

    As $x\to-\infty$, $8^x\to0$, so $f(x)\to0$. As $x\to\infty$, $8^x\to\infty$, so $f(x)\to\infty$.

  3. Final answer
    • Domain: All real numbers
    • Range: $\{y \mid y>0\}$
    • Y-intercept: $5$
    • Asymptote: $y=0$
    • End behavior: As $x$ approaches $-\infty$, the values of $f(x)$ approach $0$, and as $x$ approaches $\infty$, the values of $f(x)$ approach $\infty$.

Answer

Explanation

Step1: Find domain of $f(x)=5\cdot8^x$

Exponential functions accept all real $x$, so domain is all real numbers.

Step2: Find range of $f(x)=5\cdot8^x$

$8^x>0$ for all real $x$, so $5\cdot8^x>0$. Range is $\{y \mid y>0\}$.

Step3: Confirm y-intercept

Set $x=0$: $f(0)=5\cdot8^0=5\cdot1=5$.

Step4: Confirm horizontal asymptote

As $x\to-\infty$, $8^x\to0$, so $f(x)\to0$. Asymptote is $y=0$.

Step5: Describe end behavior

As $x\to-\infty$, $8^x\to0$, so $f(x)\to0$. As $x\to\infty$, $8^x\to\infty$, so $f(x)\to\infty$.

Answer

  • Domain: All real numbers
  • Range: $\{y \mid y>0\}$
  • Y-intercept: $5$
  • Asymptote: $y=0$
  • End behavior: As $x$ approaches $-\infty$, the values of $f(x)$ approach $0$, and as $x$ approaches $\infty$, the values of $f(x)$ approach $\infty$.

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type calculation, multiple choice
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T20:29:06

OCR Text

Show OCR extraction
part 5 of 5
identify the domain, range, intercept, and asymptote of the exponential function. then describe the end behavior.
$f(x)=5\\cdot8^{x}$

o d. $\\{y|y< \\ \\}$
o e. all real numbers

the y-intercept of the function $f(x)=5\\cdot8^{x}$ is 5.
(type an integer or a decimal.)
the asymptote of $f(x)=5\\cdot8^{x}$ is $y=0$.
(type an equation.)
as x approaches $-\\infty$, the values of f(x) approach $\\square$, and as x approaches $\\infty$, the values of f(x) approach $\\square$.

Related Topics

mathematicscalculuscalculation, multiple choicehigh schoolturns-1

Related Questions

Sovi AI iOS

Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.

Download on App Store Category: Calculus