Sovi AI

Sovi AI

Photo question helper

2025rs2-red mountain-campos-honors algebra ii (lms)< 6.1 hw (ha2) (lms …

Domain: All real numbers Range: $\{y | y > 0\}$ y-intercept: 5 Asymptote: $y=0$ End behavior: As $x \to -\infty$, $f(x) \to 0$; As $x \to \infty$, $f(x) \to \infty$

Category: calculus Updated: 2026-02-09

Question

2025rs2-red mountain-campos-honors algebra ii (lms)< 6.1 hw (ha2) (lms graded)part 5 of 5identify the domain, range, intercept, and asymptote of the exponential function. then describe the end behavior.$f(x)=5\\cdot8^{x}$○ d. $\\{y|y < \\ \\}$○ e. all real numbersthe y-intercept of the function $f(x)=5\\cdot8^{x}$ is 5.(type an integer or a decimal.)the asymptote of $f(x)=5\\cdot8^{x}$ is $y=0$.(type an equation.)as x approaches $-\\infty$, the values of f(x) approach $\\square$, and as x approaches $\\infty$, the values of f(x) approach $\\square$.

Solution Steps

  1. Understand the question

    2025rs2-red mountain-campos-honors algebra ii (lms)< 6.1 hw (ha2) (lms graded)part 5 of 5identify the domain, range, intercept, and asymptote of the exponential function. then describe the end behavior.$f(x)=5\\cdot8^{x}$○ d. $\\{y|y < \\ \\}$○ e. all real numbersthe y-intercept of the function $f(x)=5\\cdot8^{x}$ is 5.(type an integer or a decimal.)the asymptote of $f(x)=5\\cdot8^{x}$ is $y=0$.(type an equation.)as x approaches $-\\infty$, the values of f(x) approach $\\square$, and as x approaches $\\infty$, the values of f(x) approach $\\square$.

  2. Explanation

    Step1: Find the domain

    Exponential functions accept all real $x$.
    Domain: $(-\infty, \infty)$ (all real numbers)

    Step2: Find the range

    $8^x > 0$ for all $x$, so $5 \cdot 8^x > 0$.
    Range: $\{y | y > 0\}$

    Step3: Confirm y-intercept

    Set $x=0$: $f(0)=5 \cdot 8^0 = 5 \cdot 1 = 5$

    Step4: Identify asymptote

    As $x \to -\infty$, $8^x \to 0$, so $f(x) \to 0$; horizontal asymptote $y=0$

    Step5: Describe end behavior

    As $x \to -\infty$: $8^x \to 0$, so $f(x) \to 0$
    As $x \to \infty$: $8^x \to \infty$, so $f(x) \to \infty$

  3. Final answer

    Domain: All real numbers
    Range: $\{y | y > 0\}$
    y-intercept: 5
    Asymptote: $y=0$
    End behavior: As $x \to -\infty$, $f(x) \to 0$; As $x \to \infty$, $f(x) \to \infty$

Answer

Answer

Domain: All real numbers
Range: $\{y | y > 0\}$
y-intercept: 5
Asymptote: $y=0$
End behavior: As $x \to -\infty$, $f(x) \to 0$; As $x \to \infty$, $f(x) \to \infty$

Explanation

Step1: Find the domain

Exponential functions accept all real $x$.
Domain: $(-\infty, \infty)$ (all real numbers)

Step2: Find the range

$8^x > 0$ for all $x$, so $5 \cdot 8^x > 0$.
Range: $\{y | y > 0\}$

Step3: Confirm y-intercept

Set $x=0$: $f(0)=5 \cdot 8^0 = 5 \cdot 1 = 5$

Step4: Identify asymptote

As $x \to -\infty$, $8^x \to 0$, so $f(x) \to 0$; horizontal asymptote $y=0$

Step5: Describe end behavior

As $x \to -\infty$: $8^x \to 0$, so $f(x) \to 0$
As $x \to \infty$: $8^x \to \infty$, so $f(x) \to \infty$

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type multiple choice, calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T20:30:37

OCR Text

Show OCR extraction
2025rs2-red mountain-campos-honors algebra ii (lms)< 6.1 hw (ha2) (lms graded)part 5 of 5identify the domain, range, intercept, and asymptote of the exponential function. then describe the end behavior.$f(x)=5\\cdot8^{x}$○ d. $\\{y|y < \\ \\}$○ e. all real numbersthe y-intercept of the function $f(x)=5\\cdot8^{x}$ is 5.(type an integer or a decimal.)the asymptote of $f(x)=5\\cdot8^{x}$ is $y=0$.(type an equation.)as x approaches $-\\infty$, the values of f(x) approach $\\square$, and as x approaches $\\infty$, the values of f(x) approach $\\square$.

Related Topics

mathematicscalculusmultiple choice, calculationhigh schoolturns-1

Related Questions

Sovi AI iOS

Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.

Download on App Store Category: Calculus