2025rs2-red mountain-campos-honors algebra ii (lms)< 6.1 hw (ha2) (lms …
Domain: All real numbers Range: $\{y | y > 0\}$ y-intercept: 5 Asymptote: $y=0$ End behavior: As $x \to -\infty$, $f(x) \to 0$; As $x \to \infty$, $f(x) \to \infty$
Domain: All real numbers Range: $\{y | y > 0\}$ y-intercept: 5 Asymptote: $y=0$ End behavior: As $x \to -\infty$, $f(x) \to 0$; As $x \to \infty$, $f(x) \to \infty$
2025rs2-red mountain-campos-honors algebra ii (lms)< 6.1 hw (ha2) (lms graded)part 5 of 5identify the domain, range, intercept, and asymptote of the exponential function. then describe the end behavior.$f(x)=5\\cdot8^{x}$○ d. $\\{y|y < \\ \\}$○ e. all real numbersthe y-intercept of the function $f(x)=5\\cdot8^{x}$ is 5.(type an integer or a decimal.)the asymptote of $f(x)=5\\cdot8^{x}$ is $y=0$.(type an equation.)as x approaches $-\\infty$, the values of f(x) approach $\\square$, and as x approaches $\\infty$, the values of f(x) approach $\\square$.
2025rs2-red mountain-campos-honors algebra ii (lms)< 6.1 hw (ha2) (lms graded)part 5 of 5identify the domain, range, intercept, and asymptote of the exponential function. then describe the end behavior.$f(x)=5\\cdot8^{x}$○ d. $\\{y|y < \\ \\}$○ e. all real numbersthe y-intercept of the function $f(x)=5\\cdot8^{x}$ is 5.(type an integer or a decimal.)the asymptote of $f(x)=5\\cdot8^{x}$ is $y=0$.(type an equation.)as x approaches $-\\infty$, the values of f(x) approach $\\square$, and as x approaches $\\infty$, the values of f(x) approach $\\square$.
Exponential functions accept all real $x$.
Domain: $(-\infty, \infty)$ (all real numbers)
$8^x > 0$ for all $x$, so $5 \cdot 8^x > 0$.
Range: $\{y | y > 0\}$
Set $x=0$: $f(0)=5 \cdot 8^0 = 5 \cdot 1 = 5$
As $x \to -\infty$, $8^x \to 0$, so $f(x) \to 0$; horizontal asymptote $y=0$
As $x \to -\infty$: $8^x \to 0$, so $f(x) \to 0$
As $x \to \infty$: $8^x \to \infty$, so $f(x) \to \infty$
Domain: All real numbers
Range: $\{y | y > 0\}$
y-intercept: 5
Asymptote: $y=0$
End behavior: As $x \to -\infty$, $f(x) \to 0$; As $x \to \infty$, $f(x) \to \infty$
Domain: All real numbers
Range: $\{y | y > 0\}$
y-intercept: 5
Asymptote: $y=0$
End behavior: As $x \to -\infty$, $f(x) \to 0$; As $x \to \infty$, $f(x) \to \infty$
Exponential functions accept all real $x$.
Domain: $(-\infty, \infty)$ (all real numbers)
$8^x > 0$ for all $x$, so $5 \cdot 8^x > 0$.
Range: $\{y | y > 0\}$
Set $x=0$: $f(0)=5 \cdot 8^0 = 5 \cdot 1 = 5$
As $x \to -\infty$, $8^x \to 0$, so $f(x) \to 0$; horizontal asymptote $y=0$
As $x \to -\infty$: $8^x \to 0$, so $f(x) \to 0$
As $x \to \infty$: $8^x \to \infty$, so $f(x) \to \infty$
2025rs2-red mountain-campos-honors algebra ii (lms)< 6.1 hw (ha2) (lms graded)part 5 of 5identify the domain, range, intercept, and asymptote of the exponential function. then describe the end behavior.$f(x)=5\\cdot8^{x}$○ d. $\\{y|y < \\ \\}$○ e. all real numbersthe y-intercept of the function $f(x)=5\\cdot8^{x}$ is 5.(type an integer or a decimal.)the asymptote of $f(x)=5\\cdot8^{x}$ is $y=0$.(type an equation.)as x approaches $-\\infty$, the values of f(x) approach $\\square$, and as x approaches $\\infty$, the values of f(x) approach $\\square$.
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
The function $y=130 \cdot 2.9^t$ represents exponential **growth**. Rewriting the base in terms of the rate of growth or decay results in the function $y = 130 \cdot (1+1.9)^t$. I…
2347.57
Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.
Download on App Store Category: Calculus