a quantity with an initial value of 160 grows continuously at a rate of…
167.12
167.12
a quantity with an initial value of 160 grows continuously at a rate of 0.65% per hour. what is the value of the quantity after 402 minutes, to the nearest hundredth?
a quantity with an initial value of 160 grows continuously at a rate of 0.65% per hour. what is the value of the quantity after 402 minutes, to the nearest hundredth?
$402 \text{ minutes} = \frac{402}{60} = 6.7 \text{ hours}$
The continuous growth formula is $A = Pe^{rt}$, where $P=160$, $r=0.0065$, $t=6.7$.
$rt = 0.0065 \times 6.7 = 0.04355$
$e^{0.04355} \approx 1.04451$
$A = 160 \times 1.04451$
167.12
$402 \text{ minutes} = \frac{402}{60} = 6.7 \text{ hours}$
The continuous growth formula is $A = Pe^{rt}$, where $P=160$, $r=0.0065$, $t=6.7$.
$rt = 0.0065 \times 6.7 = 0.04355$
$e^{0.04355} \approx 1.04451$
$A = 160 \times 1.04451$
167.12
a quantity with an initial value of 160 grows continuously at a rate of 0.65% per hour. what is the value of the quantity after 402 minutes, to the nearest hundredth?
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
Domain: All real numbers Range: $\{y | y > 0\}$ y-intercept: 5 Asymptote: $y=0$ End behavior: As $x \to -\infty$, $f(x) \to 0$; As $x \to \infty$, $f(x) \to \infty$
The function $y=130 \cdot 2.9^t$ represents exponential **growth**. Rewriting the base in terms of the rate of growth or decay results in the function $y = 130 \cdot (1+1.9)^t$. I…
Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.
Download on App Store Category: Calculus