Sovi AI

Sovi AI

Photo question helper

shelby list the transformations in order using proper notation. (r, t, …

1. Translation: $T_{(0, k)}(\triangle ABC) = \triangle A'B'C'$ (vertical downward shift) 2. Reflection: $r_{x=a}(\triangle A'B'C') = \triangle A''B''C''$ (vertical line reflection…

Category: geometry Updated: 2026-02-09

Question

shelby
list the transformations
in order using proper
notation. (r, t, r)

Solution Steps

  1. Understand the question

    shelby
    list the transformations
    in order using proper
    notation. (r, t, r)

  2. Explanation

    Step1: Identify first transformation

    The first step is a translation ($T$) that maps $\triangle ABC$ to $\triangle A'B'C'$, shifting the triangle vertically downward.
    Notation: $T_{(0, k)}(\triangle ABC) = \triangle A'B'C'$ where $k<0$ (negative vertical shift)

    Step2: Identify second transformation

    The second step is a reflection ($r$) that maps $\triangle A'B'C'$ to $\triangle A''B''C''$, flipping the triangle over a vertical line (preserving orientation of vertices relative to each other, matching the shape change).
    Notation: $r_{x=a}(\triangle A'B'C') = \triangle A''B''C''$ where $a$ is the vertical reflection line

    Step3: Identify third transformation

    The third step is a rotation ($R$) that maps $\triangle A''B''C''$ to $\triangle A'''B'''C'''$, rotating the triangle 90 degrees clockwise around point $A''$ (matching the final rotated position).
    Notation: $R_{A'', -90^\circ}(\triangle A''B''C'') = \triangle A'''B'''C'''$

  3. Final answer
    1. Translation: $T_{(0, k)}(\triangle ABC) = \triangle A'B'C'$ (vertical downward shift)
    2. Reflection: $r_{x=a}(\triangle A'B'C') = \triangle A''B''C''$ (vertical line reflection)
    3. Rotation: $R_{A'', -90^\circ}(\triangle A''B''C'') = \triangle A'''B'''C'''$ (90° clockwise rotation about $A''$)

    In order of application: $\boldsymbol{T
    ightarrow r
    ightarrow R}$

Answer

Explanation

Step1: Identify first transformation

The first step is a translation ($T$) that maps $\triangle ABC$ to $\triangle A'B'C'$, shifting the triangle vertically downward.
Notation: $T_{(0, k)}(\triangle ABC) = \triangle A'B'C'$ where $k<0$ (negative vertical shift)

Step2: Identify second transformation

The second step is a reflection ($r$) that maps $\triangle A'B'C'$ to $\triangle A''B''C''$, flipping the triangle over a vertical line (preserving orientation of vertices relative to each other, matching the shape change).
Notation: $r_{x=a}(\triangle A'B'C') = \triangle A''B''C''$ where $a$ is the vertical reflection line

Step3: Identify third transformation

The third step is a rotation ($R$) that maps $\triangle A''B''C''$ to $\triangle A'''B'''C'''$, rotating the triangle 90 degrees clockwise around point $A''$ (matching the final rotated position).
Notation: $R_{A'', -90^\circ}(\triangle A''B''C'') = \triangle A'''B'''C'''$

Answer

  1. Translation: $T_{(0, k)}(\triangle ABC) = \triangle A'B'C'$ (vertical downward shift)
  2. Reflection: $r_{x=a}(\triangle A'B'C') = \triangle A''B''C''$ (vertical line reflection)
  3. Rotation: $R_{A'', -90^\circ}(\triangle A''B''C'') = \triangle A'''B'''C'''$ (90° clockwise rotation about $A''$)

In order of application: $\boldsymbol{T
ightarrow r
ightarrow R}$

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject geometry
Education Level high school
Difficulty unspecified
Question Type with image
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T20:32:17

OCR Text

Show OCR extraction
shelby
list the transformations
in order using proper
notation. (r, t, r)

Related Topics

mathematicsgeometrywith imagehigh schoolturns-1

Related Questions

Sovi AI iOS

Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.

Download on App Store Category: Geometry