find the measure of arc vw and arc zu. 1 0/1 point numeric arc vw= ___°…
Arc VW= $132^\circ$ Arc ZU= $132^\circ$
Arc VW= $132^\circ$ Arc ZU= $132^\circ$
find the measure of arc vw and arc zu.
1 0/1 point numeric
arc vw= ___°
× 48
2 0/1 point numeric
arc zu= ___°
× 66
find the measure of arc vw and arc zu.
1 0/1 point numeric
arc vw= ___°
× 48
2 0/1 point numeric
arc zu= ___°
× 66
Chords $VZ$ and $WU$ are congruent (marked with $\times$), so their corresponding arcs $\overset{\frown}{VZ}$ and $\overset{\frown}{WU}$ are congruent.
$\angle VTZ$ and $\angle WTU$ are vertical angles, so $m\angle VTZ = m\angle WTU = 48^\circ$.
The measure of a central angle equals its intercepted arc. So $m\overset{\frown}{VZ} = m\angle VTZ = 48^\circ$, thus $m\overset{\frown}{WU} = 48^\circ$.
$\overset{\frown}{VW}$ and $\overset{\frown}{ZU}$ are intercepted by the same central angle pair? No, use the fact that $\overset{\frown}{VW}$ is supplementary to $\overset{\frown}{VZ}$? No, wait: $VU$ and $ZW$ are diameters, so $\overset{\frown}{VZW}$ is a semicircle ($180^\circ$).
$m\overset{\frown}{VW} = 180^\circ - m\overset{\frown}{WU} = 180^\circ - 48^\circ = 132^\circ$.
$\overset{\frown}{ZU}$ is supplementary to $\overset{\frown}{VZ}$ in the semicircle $\overset{\frown}{VZU}$ ($180^\circ$):
$m\overset{\frown}{ZU} = 180^\circ - m\overset{\frown}{VZ} = 180^\circ - 48^\circ = 132^\circ$? No, wait, correct: The central angle for $\overset{\frown}{ZU}$ is supplementary to $\angle VTZ$? No, $\angle VZU$ is an inscribed angle? No, $VU$ is a diameter, so $\angle VZU$ is a right angle? No, chords $VZ=WU$, so triangles $VTZ$ and $WTU$ are congruent. The arc opposite the central angle: $\overset{\frown}{VW}$ is intercepted by $\angle VTW$, which is supplementary to $\angle VTZ$:
$m\angle VTW = 180^\circ - 48^\circ = 132^\circ$, so $m\overset{\frown}{VW} = 132^\circ$.
For $\overset{\frown}{ZU}$, the central angle is $\angle ZTU = 180^\circ - 48^\circ = 132^\circ$, so $m\overset{\frown}{ZU} = 132^\circ$. Wait no, no: $\angle ZTU$ is a straight angle? No, $VU$ and $ZW$ are intersecting diameters, so $\angle VTZ = 48^\circ$, $\angle ZTU = 180^\circ - 48^\circ = 132^\circ$, so $\overset{\frown}{ZU} = 132^\circ$, and $\angle VTW = 132^\circ$, so $\overset{\frown}{VW} = 132^\circ$.
Arc VW= $132^\circ$
Arc ZU= $132^\circ$
Chords $VZ$ and $WU$ are congruent (marked with $\times$), so their corresponding arcs $\overset{\frown}{VZ}$ and $\overset{\frown}{WU}$ are congruent.
$\angle VTZ$ and $\angle WTU$ are vertical angles, so $m\angle VTZ = m\angle WTU = 48^\circ$.
The measure of a central angle equals its intercepted arc. So $m\overset{\frown}{VZ} = m\angle VTZ = 48^\circ$, thus $m\overset{\frown}{WU} = 48^\circ$.
$\overset{\frown}{VW}$ and $\overset{\frown}{ZU}$ are intercepted by the same central angle pair? No, use the fact that $\overset{\frown}{VW}$ is supplementary to $\overset{\frown}{VZ}$? No, wait: $VU$ and $ZW$ are diameters, so $\overset{\frown}{VZW}$ is a semicircle ($180^\circ$).
$m\overset{\frown}{VW} = 180^\circ - m\overset{\frown}{WU} = 180^\circ - 48^\circ = 132^\circ$.
$\overset{\frown}{ZU}$ is supplementary to $\overset{\frown}{VZ}$ in the semicircle $\overset{\frown}{VZU}$ ($180^\circ$):
$m\overset{\frown}{ZU} = 180^\circ - m\overset{\frown}{VZ} = 180^\circ - 48^\circ = 132^\circ$? No, wait, correct: The central angle for $\overset{\frown}{ZU}$ is supplementary to $\angle VTZ$? No, $\angle VZU$ is an inscribed angle? No, $VU$ is a diameter, so $\angle VZU$ is a right angle? No, chords $VZ=WU$, so triangles $VTZ$ and $WTU$ are congruent. The arc opposite the central angle: $\overset{\frown}{VW}$ is intercepted by $\angle VTW$, which is supplementary to $\angle VTZ$:
$m\angle VTW = 180^\circ - 48^\circ = 132^\circ$, so $m\overset{\frown}{VW} = 132^\circ$.
For $\overset{\frown}{ZU}$, the central angle is $\angle ZTU = 180^\circ - 48^\circ = 132^\circ$, so $m\overset{\frown}{ZU} = 132^\circ$. Wait no, no: $\angle ZTU$ is a straight angle? No, $VU$ and $ZW$ are intersecting diameters, so $\angle VTZ = 48^\circ$, $\angle ZTU = 180^\circ - 48^\circ = 132^\circ$, so $\overset{\frown}{ZU} = 132^\circ$, and $\angle VTW = 132^\circ$, so $\overset{\frown}{VW} = 132^\circ$.
Arc VW= $132^\circ$
Arc ZU= $132^\circ$
find the measure of arc vw and arc zu. 1 0/1 point numeric arc vw= ___° × 48 2 0/1 point numeric arc zu= ___° × 66
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
1. Translation: $T_{(0, k)}(\triangle ABC) = \triangle A'B'C'$ (vertical downward shift) 2. Reflection: $r_{x=a}(\triangle A'B'C') = \triangle A''B''C''$ (vertical line reflection…
$\frac{2}{3}$ *(For the rise/run lines: From point $(6,0)$, draw a vertical line down 2 units (rise = -2) and a horizontal line left 3 units (run = -3) to reach $(3,-2)$, or draw …
Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.
Download on App Store Category: Geometry