a quantity with an initial value of 830 grows exponentially at a rate s…
2347.57
2347.57
a quantity with an initial value of 830 grows exponentially at a rate such that the quantity doubles every 2 weeks. what is the value of the quantity after 21 days, to the nearest hundredth?
a quantity with an initial value of 830 grows exponentially at a rate such that the quantity doubles every 2 weeks. what is the value of the quantity after 21 days, to the nearest hundredth?
21 days = $\frac{21}{7}$ = 3 weeks
The formula for exponential growth with doubling time is $A = A_0 \times 2^{\frac{t}{d}}$, where $A_0$ is initial value, $t$ is time elapsed, $d$ is doubling time.
Here, $A_0 = 830$, $t=3$, $d=2$.
$A = 830 \times 2^{\frac{3}{2}}$
$2^{\frac{3}{2}} = 2\sqrt{2} \approx 2.8284$
$A \approx 830 \times 2.8284$
$A \approx 2347.572$
Round 2347.572 to two decimal places.
2347.57
21 days = $\frac{21}{7}$ = 3 weeks
The formula for exponential growth with doubling time is $A = A_0 \times 2^{\frac{t}{d}}$, where $A_0$ is initial value, $t$ is time elapsed, $d$ is doubling time.
Here, $A_0 = 830$, $t=3$, $d=2$.
$A = 830 \times 2^{\frac{3}{2}}$
$2^{\frac{3}{2}} = 2\sqrt{2} \approx 2.8284$
$A \approx 830 \times 2.8284$
$A \approx 2347.572$
Round 2347.572 to two decimal places.
2347.57
a quantity with an initial value of 830 grows exponentially at a rate such that the quantity doubles every 2 weeks. what is the value of the quantity after 21 days, to the nearest hundredth?
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
$14 - \sqrt{5}$ ### Turn 2 Answer # Knowledge Points: - Zero exponent rule: \(a^0 = 1\) (where \(a\neq0\)). - Exponentiation: \(a^n\) (e.g., \(4^2\) means \(4\times4\)). - Square …
Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.
Download on App Store Category: Calculus