Sovi AI

Sovi AI

写真で学ぶ問題サポート

use end behavior to select the correct function for each graph: a. $x^2…

Top (orange) graph: a. $x^2 - 8x + 9$ Second (green) graph: b. $x^3 - 4x^2$ Third (red) graph: d. $-x^4 + 2x^2$ Bottom (blue) graph: c. $-x^3 - x^2 + 4x - 3$

カテゴリ: calculus 更新日: 2026-02-09

問題

use end behavior to select the correct function for each graph:
a. $x^2 - 8x + 9$
b. $x^3 - 4x^2$
c. $-x^3 - x^2 + 4x - 3$
d. $-x^4 + 2x^2$

解法ステップ

  1. Understand the question

    use end behavior to select the correct function for each graph:
    a. $x^2 - 8x + 9$
    b. $x^3 - 4x^2$
    c. $-x^3 - x^2 + 4x - 3$
    d. $-x^4 + 2x^2$

  2. Explanation

    Step1: Identify degree/leading coefficient for each function

    • a. $x^2 - 8x + 9$: Degree 2 (even), leading coefficient $1>0$
    • b. $x^3 - 4x^2$: Degree 3 (odd), leading coefficient $1>0$
    • c. $-x^3 - x^2 + 4x - 3$: Degree 3 (odd), leading coefficient $-1<0$
    • d. $-x^4 + 2x^2$: Degree 4 (even), leading coefficient $-1<0$

    Step2: Match end behavior to top graph

    Top graph: As $x\to+\infty$, $f(x)\to+\infty$; as $x\to-\infty$, $f(x)\to+\infty$ (both ends up). Matches even degree, positive leading coefficient: a. $x^2 - 8x + 9$

    Step3: Match end behavior to second graph

    Second graph: As $x\to+\infty$, $f(x)\to+\infty$; as $x\to-\infty$, $f(x)\to-\infty$ (right up, left down). Matches odd degree, positive leading coefficient: b. $x^3 - 4x^2$

    Step4: Match end behavior to third graph

    Third graph: As $x\to+\infty$, $f(x)\to-\infty$; as $x\to-\infty$, $f(x)\to-\infty$ (both ends down). Matches even degree, negative leading coefficient: d. $-x^4 + 2x^2$

    Step5: Match end behavior to bottom graph

    Bottom graph: As $x\to+\infty$, $f(x)\to-\infty$; as $x\to-\infty$, $f(x)\to+\infty$ (right down, left up). Matches odd degree, negative leading coefficient: c. $-x^3 - x^2 + 4x - 3$

  3. Final answer

    Top (orange) graph: a. $x^2 - 8x + 9$
    Second (green) graph: b. $x^3 - 4x^2$
    Third (red) graph: d. $-x^4 + 2x^2$
    Bottom (blue) graph: c. $-x^3 - x^2 + 4x - 3$

答え

Explanation

Step1: Identify degree/leading coefficient for each function

  • a. $x^2 - 8x + 9$: Degree 2 (even), leading coefficient $1>0$
  • b. $x^3 - 4x^2$: Degree 3 (odd), leading coefficient $1>0$
  • c. $-x^3 - x^2 + 4x - 3$: Degree 3 (odd), leading coefficient $-1<0$
  • d. $-x^4 + 2x^2$: Degree 4 (even), leading coefficient $-1<0$

Step2: Match end behavior to top graph

Top graph: As $x\to+\infty$, $f(x)\to+\infty$; as $x\to-\infty$, $f(x)\to+\infty$ (both ends up). Matches even degree, positive leading coefficient: a. $x^2 - 8x + 9$

Step3: Match end behavior to second graph

Second graph: As $x\to+\infty$, $f(x)\to+\infty$; as $x\to-\infty$, $f(x)\to-\infty$ (right up, left down). Matches odd degree, positive leading coefficient: b. $x^3 - 4x^2$

Step4: Match end behavior to third graph

Third graph: As $x\to+\infty$, $f(x)\to-\infty$; as $x\to-\infty$, $f(x)\to-\infty$ (both ends down). Matches even degree, negative leading coefficient: d. $-x^4 + 2x^2$

Step5: Match end behavior to bottom graph

Bottom graph: As $x\to+\infty$, $f(x)\to-\infty$; as $x\to-\infty$, $f(x)\to+\infty$ (right down, left up). Matches odd degree, negative leading coefficient: c. $-x^3 - x^2 + 4x - 3$

Answer

Top (orange) graph: a. $x^2 - 8x + 9$
Second (green) graph: b. $x^3 - 4x^2$
Third (red) graph: d. $-x^4 + 2x^2$
Bottom (blue) graph: c. $-x^3 - x^2 + 4x - 3$

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type with image, multiple choice
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T20:05:08

OCR Text

Show OCR extraction
use end behavior to select the correct function for each graph:
a. $x^2 - 8x + 9$
b. $x^3 - 4x^2$
c. $-x^3 - x^2 + 4x - 3$
d. $-x^4 + 2x^2$

関連トピック

mathematicscalculuswith image, multiple choicehigh schoolturns-1

関連問題

Sovi AI iOS

公式サイトは mysovi.ai。問題ページは question-banks.mysovi.ai で配信。iOS アプリは Apple App Store で提供。

App Store で入手 カテゴリ: 微積分