Sovi AI

Sovi AI

Asistente de preguntas por foto

which of the following is a rational function with horizontal asymptote…

A. $y = \frac{5x + 4}{x + 4}$

Categoría: calculus Actualizado: 2026-02-09

Pregunta

which of the following is a rational function with horizontal asymptote $y = 5$ and vertical asymptote $x = -4$?
a $y = \\frac{5x + 4}{x + 4}$
b $y = \\frac{5x}{x - 4}$
c $y = \\frac{x - 5}{x + 4}$
d $y = \\frac{-4x}{x - 5}$

Pasos de solución

  1. Understand the question

    which of the following is a rational function with horizontal asymptote $y = 5$ and vertical asymptote $x = -4$?
    a $y = \\frac{5x + 4}{x + 4}$
    b $y = \\frac{5x}{x - 4}$
    c $y = \\frac{x - 5}{x + 4}$
    d $y = \\frac{-4x}{x - 5}$

  2. Explanation

    Step1: Find vertical asymptote condition

    A rational function $y=\frac{f(x)}{g(x)}$ has a vertical asymptote where $g(x)=0$. We need $x=-4$ to make the denominator zero, so denominator should be $x+4$. This eliminates options B and D.

    Step2: Find horizontal asymptote condition

    For a rational function where degree of numerator = degree of denominator, horizontal asymptote is $y=\frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}}$. We need this to be $y=5$.

    • For option A: $\frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}}=\frac{5}{1}=5$
    • For option C: $\frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}}=\frac{1}{1}=1$

    This confirms option A matches the required horizontal asymptote.

  3. Final answer

    A. $y = \frac{5x + 4}{x + 4}$

Respuesta

Explanation

Step1: Find vertical asymptote condition

A rational function $y=\frac{f(x)}{g(x)}$ has a vertical asymptote where $g(x)=0$. We need $x=-4$ to make the denominator zero, so denominator should be $x+4$. This eliminates options B and D.

Step2: Find horizontal asymptote condition

For a rational function where degree of numerator = degree of denominator, horizontal asymptote is $y=\frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}}$. We need this to be $y=5$.

  • For option A: $\frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}}=\frac{5}{1}=5$
  • For option C: $\frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}}=\frac{1}{1}=1$

This confirms option A matches the required horizontal asymptote.

Answer

A. $y = \frac{5x + 4}{x + 4}$

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type multiple choice, calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T20:17:03

OCR Text

Show OCR extraction
which of the following is a rational function with horizontal asymptote $y = 5$ and vertical asymptote $x = -4$?
a $y = \\frac{5x + 4}{x + 4}$
b $y = \\frac{5x}{x - 4}$
c $y = \\frac{x - 5}{x + 4}$
d $y = \\frac{-4x}{x - 5}$

Temas relacionados

mathematicscalculusmultiple choice, calculationhigh schoolturns-1

Preguntas relacionadas

Sovi AI iOS

Sitio oficial: mysovi.ai. Las páginas se sirven en question-banks.mysovi.ai. La app iOS está en Apple App Store.

Descargar en App Store Categoría: Cálculo