evaluate $int_{-8}^{0} (-sqrt{-x^{2}-8x})dx$
$-8\pi$
$-8\pi$
evaluate $int_{-8}^{0} (-sqrt{-x^{2}-8x})dx$
evaluate $int_{-8}^{0} (-sqrt{-x^{2}-8x})dx$
Rewrite the quadratic expression under the square root by completing the square:
$$-x^2 -8x = -(x^2 +8x) = -(x^2+8x+16-16) = 16-(x+4)^2$$
The integral becomes:
$$\int_{-8}^{0} -\sqrt{16-(x+4)^2} dx$$
Let $u = x+4$, so $du = dx$. When $x=-8$, $u=-4$; when $x=0$, $u=4$. The integral transforms to:
$$-\int_{-4}^{4} \sqrt{16-u^2} du$$
The integral $\int_{-4}^{4} \sqrt{16-u^2} du$ represents the area of a semicircle with radius $4$ (since $y=\sqrt{16-u^2}$ is the upper half of the circle $u^2+y^2=16$). The area of a full circle is $\pi r^2 = 16\pi$, so the semicircle area is $\frac{1}{2} \times 16\pi = 8\pi$.
Multiply by the negative sign from the integral:
$$-8\pi$$
$-8\pi$
Rewrite the quadratic expression under the square root by completing the square:
$$-x^2 -8x = -(x^2 +8x) = -(x^2+8x+16-16) = 16-(x+4)^2$$
The integral becomes:
$$\int_{-8}^{0} -\sqrt{16-(x+4)^2} dx$$
Let $u = x+4$, so $du = dx$. When $x=-8$, $u=-4$; when $x=0$, $u=4$. The integral transforms to:
$$-\int_{-4}^{4} \sqrt{16-u^2} du$$
The integral $\int_{-4}^{4} \sqrt{16-u^2} du$ represents the area of a semicircle with radius $4$ (since $y=\sqrt{16-u^2}$ is the upper half of the circle $u^2+y^2=16$). The area of a full circle is $\pi r^2 = 16\pi$, so the semicircle area is $\frac{1}{2} \times 16\pi = 8\pi$.
Multiply by the negative sign from the integral:
$$-8\pi$$
$-8\pi$
evaluate $int_{-8}^{0} (-sqrt{-x^{2}-8x})dx$
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
False
A. $f(x)=3^{x}-10$, B. $f(x)=\frac{9}{4}x^{2}-10$
官網:mysovi.ai。題庫頁面網域:question-banks.mysovi.ai。iOS 應用透過 Apple App Store 提供。
前往 App Store 下載 分類: 微積分