Step1: Identify target table
The question refers to the "NEGATIVE" table:
| X | Y |
|---|---|
|-1 |3 |
|0 |2 |
|1 |1 |
Step2: Calculate $\Delta y$ and $\Delta x$
Take two consecutive points, e.g., $(-1,3)$ and $(0,2)$:
$\Delta y = 2 - 3 = -1$
$\Delta x = 0 - (-1) = 1$
Step3: Compute slope
Slope = $\frac{\Delta y}{\Delta x} = \frac{-1}{1} = -1$
*Verify with another pair $(0,2)$ and $(1,1)$:
$\Delta y = 1 - 2 = -1$, $\Delta x = 1 - 0 = 1$, slope = $\frac{-1}{1} = -1$
Wait, correction: Recheck the table's labeled changes: $\Delta y = -2$, $\Delta x = +2$
Slope = $\frac{\Delta y}{\Delta x} = \frac{-2}{2} = -1$
*Note: The options provided do not include -1, but based on the table's marked $\Delta y=-2$, $\Delta x=+2$, the slope is $\frac{-2}{2}=-1$. However, if we use the visible table values:
Using $(-1,3)$ and $(1,1)$:
$\Delta y = 1-3=-2$, $\Delta x=1-(-1)=2$, slope = $\frac{-2}{2}=-1$