Sovi AI

Sovi AI

拍题学习助手

use end behavior to select the correct function for each graph: a. $x^2…

Top (green) graph: d. $x^3 - 4x^2$ Second (red) graph: b. $-x^4 + 2x^2$ Third (orange) graph: a. $x^2 - 7x + 9$ Bottom (blue) graph: c. $-x^3 - x^2 + 2x - 3$

分类: calculus 更新时间: 2026-02-09

题目

use end behavior to select the correct function for each graph:
a. $x^2 - 7x + 9$
b. $-x^4 + 2x^2$
c. $-x^3 - x^2 + 2x - 3$
d. $x^3 - 4x^2$

解题步骤

  1. Understand the question

    use end behavior to select the correct function for each graph:
    a. $x^2 - 7x + 9$
    b. $-x^4 + 2x^2$
    c. $-x^3 - x^2 + 2x - 3$
    d. $x^3 - 4x^2$

  2. Explanation

    Step1: Identify degree/leading coefficient rules

    For polynomial $f(x)=a_nx^n+...+a_0$:

    • Even $n$: $\lim_{x\to\pm\infty}f(x)=+\infty$ if $a_n>0$; $\lim_{x\to\pm\infty}f(x)=-\infty$ if $a_n<0$
    • Odd $n$: $\lim_{x\to+\infty}f(x)=+\infty, \lim_{x\to-\infty}f(x)=-\infty$ if $a_n>0$; $\lim_{x\to+\infty}f(x)=-\infty, \lim_{x\to-\infty}f(x)=+\infty$ if $a_n<0$

    Step2: Analyze top (green) graph

    End behavior: $x\to+\infty, f(x)\to+\infty$; $x\to-\infty, f(x)\to-\infty$. This matches odd degree, positive leading coefficient.
    Check options: d. $x^3-4x^2$ (degree 3, $a_3=1>0$)

    Step3: Analyze second (red) graph

    End behavior: $x\to\pm\infty, f(x)\to-\infty$. This matches even degree, negative leading coefficient.
    Check options: b. $-x^4+2x^2$ (degree 4, $a_4=-1<0$)

    Step4: Analyze third (orange) graph

    End behavior: $x\to\pm\infty, f(x)\to+\infty$. This matches even degree, positive leading coefficient.
    Check options: a. $x^2-7x+9$ (degree 2, $a_2=1>0$)

    Step5: Analyze bottom (blue) graph

    End behavior: $x\to+\infty, f(x)\to-\infty$; $x\to-\infty, f(x)\to+\infty$. This matches odd degree, negative leading coefficient.
    Check options: c. $-x^3-x^2+2x-3$ (degree 3, $a_3=-1<0$)

  3. Final answer

    Top (green) graph: d. $x^3 - 4x^2$
    Second (red) graph: b. $-x^4 + 2x^2$
    Third (orange) graph: a. $x^2 - 7x + 9$
    Bottom (blue) graph: c. $-x^3 - x^2 + 2x - 3$

答案

Explanation

Step1: Identify degree/leading coefficient rules

For polynomial $f(x)=a_nx^n+...+a_0$:

  • Even $n$: $\lim_{x\to\pm\infty}f(x)=+\infty$ if $a_n>0$; $\lim_{x\to\pm\infty}f(x)=-\infty$ if $a_n<0$
  • Odd $n$: $\lim_{x\to+\infty}f(x)=+\infty, \lim_{x\to-\infty}f(x)=-\infty$ if $a_n>0$; $\lim_{x\to+\infty}f(x)=-\infty, \lim_{x\to-\infty}f(x)=+\infty$ if $a_n<0$

Step2: Analyze top (green) graph

End behavior: $x\to+\infty, f(x)\to+\infty$; $x\to-\infty, f(x)\to-\infty$. This matches odd degree, positive leading coefficient.
Check options: d. $x^3-4x^2$ (degree 3, $a_3=1>0$)

Step3: Analyze second (red) graph

End behavior: $x\to\pm\infty, f(x)\to-\infty$. This matches even degree, negative leading coefficient.
Check options: b. $-x^4+2x^2$ (degree 4, $a_4=-1<0$)

Step4: Analyze third (orange) graph

End behavior: $x\to\pm\infty, f(x)\to+\infty$. This matches even degree, positive leading coefficient.
Check options: a. $x^2-7x+9$ (degree 2, $a_2=1>0$)

Step5: Analyze bottom (blue) graph

End behavior: $x\to+\infty, f(x)\to-\infty$; $x\to-\infty, f(x)\to+\infty$. This matches odd degree, negative leading coefficient.
Check options: c. $-x^3-x^2+2x-3$ (degree 3, $a_3=-1<0$)

Answer

Top (green) graph: d. $x^3 - 4x^2$
Second (red) graph: b. $-x^4 + 2x^2$
Third (orange) graph: a. $x^2 - 7x + 9$
Bottom (blue) graph: c. $-x^3 - x^2 + 2x - 3$

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type with image, multiple choice
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T20:04:21

OCR Text

Show OCR extraction
use end behavior to select the correct function for each graph:
a. $x^2 - 7x + 9$
b. $-x^4 + 2x^2$
c. $-x^3 - x^2 + 2x - 3$
d. $x^3 - 4x^2$

相关知识点

mathematicscalculuswith image, multiple choicehigh schoolturns-1

关联题目

Sovi AI iOS

官网:mysovi.ai。题库页面域名:question-banks.mysovi.ai。iOS 应用通过 Apple App Store 提供。

前往 App Store 下载 分类: 微积分