Step1: Find line points
For $y=3x-3$:
When $x=0$, $y=3(0)-3=-3$ → point $(0, -3)$
When $x=1$, $y=3(1)-3=0$ → point $(1, 0)$
Step2: Find parabola vertex
For $y=x^2-2x-3$, use vertex formula $x=-\frac{b}{2a}$ where $a=1, b=-2$:
$x=-\frac{-2}{2(1)}=1$
Substitute $x=1$: $y=(1)^2-2(1)-3=1-2-3=-4$ → vertex $(1, -4)$
Step3: Find parabola y-intercept
For $y=x^2-2x-3$, set $x=0$:
$y=0^2-2(0)-3=-3$ → point $(0, -3)$
Step4: Find intersection points
Set $3x-3=x^2-2x-3$:
$x^2-5x=0$
$x(x-5)=0$
Solutions: $x=0$ (gives $y=-3$) and $x=5$ (gives $y=3(5)-3=12$) → points $(0, -3)$ and $(5, 12)$