kuta software - infinite calculus average rates of change for each prob…
\( 2 \) ### Problem 2: \( v = -\frac{1}{x - 2} \); \([-3, -2]\)
\( 2 \) ### Problem 2: \( v = -\frac{1}{x - 2} \); \([-3, -2]\)
kuta software - infinite calculus
average rates of change
for each problem, find the average rate of change of the function over the given interval.
kuta software - infinite calculus
average rates of change
for each problem, find the average rate of change of the function over the given interval.
The average rate of change of a function \( y = f(x) \) over the interval \([a, b]\) is given by \(\frac{f(b) - f(a)}{b - a}\). Here, \( a = 0 \), \( b = 3 \), and \( f(x) = x^2 - x + 1 \).
Substitute \( x = 0 \) into \( f(x) \):
\( f(0) = (0)^2 - 0 + 1 = 1 \).
Substitute \( x = 3 \) into \( f(x) \):
\( f(3) = (3)^2 - 3 + 1 = 9 - 3 + 1 = 7 \).
\(\frac{f(3) - f(0)}{3 - 0} = \frac{7 - 1}{3} = \frac{6}{3} = 2\).
The average rate of change of a function \( v = g(x) \) over \([a, b]\) is \(\frac{g(b) - g(a)}{b - a}\). Here, \( a = -3 \), \( b = -2 \), and \( g(x) = -\frac{1}{x - 2} \).
Substitute \( x = -3 \) into \( g(x) \):
\( g(-3) = -\frac{1}{-3 - 2} = -\frac{1}{-5} = \frac{1}{5} \).
Substitute \( x = -2 \) into \( g(x) \):
\( g(-2) = -\frac{1}{-2 - 2} = -\frac{1}{-4} = \frac{1}{4} \).
\(\frac{g(-2) - g(-3)}{-2 - (-3)} = \frac{\frac{1}{4} - \frac{1}{5}}{-2 + 3}\).
First, simplify the numerator: \(\frac{1}{4} - \frac{1}{5} = \frac{5 - 4}{20} = \frac{1}{20}\).
The denominator is \( 1 \). Thus, \(\frac{\frac{1}{20}}{1} = \frac{1}{20}\).
\( 2 \)
The average rate of change of a function \( y = f(x) \) over the interval \([a, b]\) is given by \(\frac{f(b) - f(a)}{b - a}\). Here, \( a = 0 \), \( b = 3 \), and \( f(x) = x^2 - x + 1 \).
Substitute \( x = 0 \) into \( f(x) \):
\( f(0) = (0)^2 - 0 + 1 = 1 \).
Substitute \( x = 3 \) into \( f(x) \):
\( f(3) = (3)^2 - 3 + 1 = 9 - 3 + 1 = 7 \).
\(\frac{f(3) - f(0)}{3 - 0} = \frac{7 - 1}{3} = \frac{6}{3} = 2\).
\( 2 \)
The average rate of change of a function \( v = g(x) \) over \([a, b]\) is \(\frac{g(b) - g(a)}{b - a}\). Here, \( a = -3 \), \( b = -2 \), and \( g(x) = -\frac{1}{x - 2} \).
Substitute \( x = -3 \) into \( g(x) \):
\( g(-3) = -\frac{1}{-3 - 2} = -\frac{1}{-5} = \frac{1}{5} \).
Substitute \( x = -2 \) into \( g(x) \):
\( g(-2) = -\frac{1}{-2 - 2} = -\frac{1}{-4} = \frac{1}{4} \).
\(\frac{g(-2) - g(-3)}{-2 - (-3)} = \frac{\frac{1}{4} - \frac{1}{5}}{-2 + 3}\).
First, simplify the numerator: \(\frac{1}{4} - \frac{1}{5} = \frac{5 - 4}{20} = \frac{1}{20}\).
The denominator is \( 1 \). Thus, \(\frac{\frac{1}{20}}{1} = \frac{1}{20}\).
\( \frac{1}{20} \)
kuta software - infinite calculus
average rates of change
for each problem, find the average rate of change of the function over the given interval.
1) ( y = x^2 - x + 1 ); ( 0, 3 )
2) ( v = -dfrac{1}{x - 2} ); ( -3, -2 )
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
2 ### Problem 2: \( v = -\frac{1}{x - 2} \); \([-3, -2]\)
To draw the line \(y =-\frac{3}{2}x-3\), plot the points \((0, - 3)\), \((2,-6)\) (or \((-2,0)\)) and draw a straight line through them.
Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.
Download on App Store Category: Calculus