5 for which of the following functions does $f(2) = -1$? choose all tha…
A. $f(x)=3^{x}-10$, B. $f(x)=\frac{9}{4}x^{2}-10$
A. $f(x)=3^{x}-10$, B. $f(x)=\frac{9}{4}x^{2}-10$
5 for which of the following functions does $f(2) = -1$? choose all that apply!
a $f(x)=3^{x}-10$
b $f(x)=\\frac{9}{4}x^{2}-10$
c $f(x)=x-4$
d $f(x)=3.5x-10$
5 for which of the following functions does $f(2) = -1$? choose all that apply!
a $f(x)=3^{x}-10$
b $f(x)=\\frac{9}{4}x^{2}-10$
c $f(x)=x-4$
d $f(x)=3.5x-10$
Substitute $x=2$ into $f(x)=3^x - 10$:
$f(2)=3^2 - 10 = 9 - 10 = -1$
Substitute $x=2$ into $f(x)=\frac{9}{4}x^2 - 10$:
$f(2)=\frac{9}{4}(2)^2 - 10 = \frac{9}{4} \times 4 - 10 = 9 - 10 = -1$
Substitute $x=2$ into $f(x)=x - 4$:
$f(2)=2 - 4 = -2$
Substitute $x=2$ into $f(x)=3.5x - 10$:
$f(2)=3.5 \times 2 - 10 = 7 - 10 = -3$
A. $f(x)=3^{x}-10$, B. $f(x)=\frac{9}{4}x^{2}-10$
Substitute $x=2$ into $f(x)=3^x - 10$:
$f(2)=3^2 - 10 = 9 - 10 = -1$
Substitute $x=2$ into $f(x)=\frac{9}{4}x^2 - 10$:
$f(2)=\frac{9}{4}(2)^2 - 10 = \frac{9}{4} \times 4 - 10 = 9 - 10 = -1$
Substitute $x=2$ into $f(x)=x - 4$:
$f(2)=2 - 4 = -2$
Substitute $x=2$ into $f(x)=3.5x - 10$:
$f(2)=3.5 \times 2 - 10 = 7 - 10 = -3$
A. $f(x)=3^{x}-10$, B. $f(x)=\frac{9}{4}x^{2}-10$
5 for which of the following functions does $f(2) = -1$? choose all that apply!
a $f(x)=3^{x}-10$
b $f(x)=\\frac{9}{4}x^{2}-10$
c $f(x)=x-4$
d $f(x)=3.5x-10$
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
9
Top (green) graph: d. $x^3 - 4x^2$ Second (red) graph: b. $-x^4 + 2x^2$ Third (orange) graph: a. $x^2 - 7x + 9$ Bottom (blue) graph: c. $-x^3 - x^2 + 2x - 3$
Site officiel : mysovi.ai. Les pages de questions sont servies sur question-banks.mysovi.ai. L’app iOS est disponible sur l’App Store Apple.
Télécharger sur l'App Store Catégorie: Calcul