Sovi AI

Sovi AI

Assistant de questions photo

approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9…

$\frac{26 + 34}{2} = 30$

Catégorie: calculus Mis à jour: 2026-02-09

Question

approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9$, the x-axis, $x = -4$, and $x = 0$ by finding the combined area of the rectangles (as shown in each figure) and averaging the results.

Étapes de solution

  1. Understand the question

    approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9$, the x-axis, $x = -4$, and $x = 0$ by finding the combined area of the rectangles (as shown in each figure) and averaging the results.

  2. Explanation

    Step1: Identify rectangle widths

    The interval from $x=-4$ to $x=0$ is split into 2 equal subintervals, so width $\Delta x = \frac{0 - (-4)}{2} = 2$.

    Step2: Calculate left rectangle area

    Left rectangles use heights at $x=-4$ and $x=-2$:
    Height at $x=-4$: $y(-4) = -\frac{1}{4}(-4)^2 + 9 = 5$
    Height at $x=-2$: $y(-2) = -\frac{1}{4}(-2)^2 + 9 = 8$
    Area $A_{\text{left}} = \Delta x \cdot (y(-4) + y(-2)) = 2 \cdot (5 + 8) = 26$

    Step3: Calculate right rectangle area

    Right rectangles use heights at $x=-2$ and $x=0$:
    Height at $x=-2$: $y(-2) = 8$
    Height at $x=0$: $y(0) = -\frac{1}{4}(0)^2 + 9 = 9$
    Area $A_{\text{right}} = \Delta x \cdot (y(-2) + y(0)) = 2 \cdot (8 + 9) = 34$

    Step4: Average the two areas

    Find the mean of the two areas:
    $\text{Average Area} = \frac{A_{\text{left}} + A_{\text{right}}}{2}$

  3. Final answer

    $\frac{26 + 34}{2} = 30$

Réponse

Explanation

Step1: Identify rectangle widths

The interval from $x=-4$ to $x=0$ is split into 2 equal subintervals, so width $\Delta x = \frac{0 - (-4)}{2} = 2$.

Step2: Calculate left rectangle area

Left rectangles use heights at $x=-4$ and $x=-2$:
Height at $x=-4$: $y(-4) = -\frac{1}{4}(-4)^2 + 9 = 5$
Height at $x=-2$: $y(-2) = -\frac{1}{4}(-2)^2 + 9 = 8$
Area $A_{\text{left}} = \Delta x \cdot (y(-4) + y(-2)) = 2 \cdot (5 + 8) = 26$

Step3: Calculate right rectangle area

Right rectangles use heights at $x=-2$ and $x=0$:
Height at $x=-2$: $y(-2) = 8$
Height at $x=0$: $y(0) = -\frac{1}{4}(0)^2 + 9 = 9$
Area $A_{\text{right}} = \Delta x \cdot (y(-2) + y(0)) = 2 \cdot (8 + 9) = 34$

Step4: Average the two areas

Find the mean of the two areas:
$\text{Average Area} = \frac{A_{\text{left}} + A_{\text{right}}}{2}$

Answer

$\frac{26 + 34}{2} = 30$

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type with image, calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T19:56:03

OCR Text

Show OCR extraction
approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9$, the x-axis, $x = -4$, and $x = 0$ by finding the combined area of the rectangles (as shown in each figure) and averaging the results.

Sujets liés

mathematicscalculuswith image, calculationhigh schoolturns-1

Questions liées

Sovi AI iOS

Site officiel : mysovi.ai. Les pages de questions sont servies sur question-banks.mysovi.ai. L’app iOS est disponible sur l’App Store Apple.

Télécharger sur l'App Store Catégorie: Calcul