Sovi AI

Sovi AI

Assistant de questions photo

10 points - fill in each blank, table, & graph the following rational f…

Vertical asymptote: $\boldsymbol{x=-2}$ Horizontal asymptote: $\boldsymbol{y=1}$ x-intercept: $\boldsymbol{(-5, 0)}$ y-intercept: $\boldsymbol{(0, \frac{5}{2})}$ hole: $\boldsymbo…

Catégorie: calculus Mis à jour: 2026-02-09

Question

10 points - fill in each blank, table, & graph the following rational function:
$y = \\frac{x+5}{x+2}$
(1 pt) vertical asymptote: _____________
(1 pt) horizontal asymptote: _____________
(1 pt) x-intercept: _____________
(1 pt) y-intercept: _____________
(1 pt) hole: _____________
(1 pt) domain: _____________
(1 pt) range: _____________
(1 pt) table
x | y
(2 pts) graph grid

Étapes de solution

  1. Understand the question

    10 points - fill in each blank, table, & graph the following rational function:
    $y = \\frac{x+5}{x+2}$
    (1 pt) vertical asymptote: _____________
    (1 pt) horizontal asymptote: _____________
    (1 pt) x-intercept: _____________
    (1 pt) y-intercept: _____________
    (1 pt) hole: _____________
    (1 pt) domain: _____________
    (1 pt) range: _____________
    (1 pt) table
    x | y
    (2 pts) graph grid

  2. Explanation

    Step1: Find vertical asymptote

    Set denominator to 0: $x+2=0 \implies x=-2$

    Step2: Find horizontal asymptote

    Degrees equal, use leading coeffs: $\frac{1}{1}=1 \implies y=1$

    Step3: Find x-intercept

    Set numerator to 0: $x+5=0 \implies x=-5$

    Step4: Find y-intercept

    Set $x=0$: $y=\frac{0+5}{0+2}=\frac{5}{2}$

    Step5: Check for holes

    No common factors, so no hole.

    Step6: Find domain

    Exclude vertical asymptote: $x
    eq -2$

    Step7: Find range

    Exclude horizontal asymptote: $y
    eq 1$

    Step8: Create value table

    Choose x-values around asymptote:
    | $x$ | $y=\frac{x+5}{x+2}$ |
    |-----|----------------------|
    | $-7$ | $\frac{-7+5}{-7+2}=\frac{-2}{-5}=0.4$ |
    | $-6$ | $\frac{-6+5}{-6+2}=\frac{-1}{-4}=0.25$ |
    | $-5$ | $\frac{-5+5}{-5+2}=0$ |
    | $-3$ | $\frac{-3+5}{-3+2}=\frac{2}{-1}=-2$ |
    | $-1$ | $\frac{-1+5}{-1+2}=\frac{4}{1}=4$ |
    | $0$ | $\frac{0+5}{0+2}=2.5$ |
    | $3$ | $\frac{3+5}{3+2}=\frac{8}{5}=1.6$ |
    | $8$ | $\frac{8+5}{8+2}=\frac{13}{10}=1.3$ |

  3. Final answer

    Vertical asymptote: $\boldsymbol{x=-2}$
    Horizontal asymptote: $\boldsymbol{y=1}$
    x-intercept: $\boldsymbol{(-5, 0)}$
    y-intercept: $\boldsymbol{(0, \frac{5}{2})}$
    hole: $\boldsymbol{\text{None}}$
    domain: $\boldsymbol{\{x \in \mathbb{R} \mid x
    eq -2\}}$
    range: $\boldsymbol{\{y \in \mathbb{R} \mid y
    eq 1\}}$

    Table:

    | $x$ | $y$ |
    |-----|-----|
    | $-7$ | $0.4$ |
    | $-6$ | $0.25$ |
    | $-5$ | $0$ |
    | $-3$ | $-2$ |
    | $-1$ | $4$ |
    | $0$ | $2.5$ |
    | $3$ | $1.6$ |
    | $8$ | $1.3$ |

    Graph Instructions:
    1. Draw dashed lines for $x=-2$ (vertical asymptote) and $y=1$ (horizontal asymptote).
    2. Plot the points from the table.
    3. Draw two curves:
    • Left curve: Passes through $(-7,0.4), (-6,0.25), (-5,0), (-3,-2)$, approaching $x=-2$ (downward) and $y=1$ (leftward).
    • Right curve: Passes through $(-1,4), (0,2.5), (3,1.6), (8,1.3)$, approaching $x=-2$ (upward) and $y=1$ (rightward).

Réponse

Explanation

Step1: Find vertical asymptote

Set denominator to 0: $x+2=0 \implies x=-2$

Step2: Find horizontal asymptote

Degrees equal, use leading coeffs: $\frac{1}{1}=1 \implies y=1$

Step3: Find x-intercept

Set numerator to 0: $x+5=0 \implies x=-5$

Step4: Find y-intercept

Set $x=0$: $y=\frac{0+5}{0+2}=\frac{5}{2}$

Step5: Check for holes

No common factors, so no hole.

Step6: Find domain

Exclude vertical asymptote: $x
eq -2$

Step7: Find range

Exclude horizontal asymptote: $y
eq 1$

Step8: Create value table

Choose x-values around asymptote:
| $x$ | $y=\frac{x+5}{x+2}$ |
|-----|----------------------|
| $-7$ | $\frac{-7+5}{-7+2}=\frac{-2}{-5}=0.4$ |
| $-6$ | $\frac{-6+5}{-6+2}=\frac{-1}{-4}=0.25$ |
| $-5$ | $\frac{-5+5}{-5+2}=0$ |
| $-3$ | $\frac{-3+5}{-3+2}=\frac{2}{-1}=-2$ |
| $-1$ | $\frac{-1+5}{-1+2}=\frac{4}{1}=4$ |
| $0$ | $\frac{0+5}{0+2}=2.5$ |
| $3$ | $\frac{3+5}{3+2}=\frac{8}{5}=1.6$ |
| $8$ | $\frac{8+5}{8+2}=\frac{13}{10}=1.3$ |

Answer

Vertical asymptote: $\boldsymbol{x=-2}$
Horizontal asymptote: $\boldsymbol{y=1}$
x-intercept: $\boldsymbol{(-5, 0)}$
y-intercept: $\boldsymbol{(0, \frac{5}{2})}$
hole: $\boldsymbol{\text{None}}$
domain: $\boldsymbol{\{x \in \mathbb{R} \mid x
eq -2\}}$
range: $\boldsymbol{\{y \in \mathbb{R} \mid y
eq 1\}}$

Table:

| $x$ | $y$ |
|-----|-----|
| $-7$ | $0.4$ |
| $-6$ | $0.25$ |
| $-5$ | $0$ |
| $-3$ | $-2$ |
| $-1$ | $4$ |
| $0$ | $2.5$ |
| $3$ | $1.6$ |
| $8$ | $1.3$ |

Graph Instructions:
  1. Draw dashed lines for $x=-2$ (vertical asymptote) and $y=1$ (horizontal asymptote).
  2. Plot the points from the table.
  3. Draw two curves:
  • Left curve: Passes through $(-7,0.4), (-6,0.25), (-5,0), (-3,-2)$, approaching $x=-2$ (downward) and $y=1$ (leftward).
  • Right curve: Passes through $(-1,4), (0,2.5), (3,1.6), (8,1.3)$, approaching $x=-2$ (upward) and $y=1$ (rightward).

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type with chart, calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T19:48:43

OCR Text

Show OCR extraction
10 points - fill in each blank, table, & graph the following rational function:
$y = \\frac{x+5}{x+2}$
(1 pt) vertical asymptote: _____________
(1 pt) horizontal asymptote: _____________
(1 pt) x-intercept: _____________
(1 pt) y-intercept: _____________
(1 pt) hole: _____________
(1 pt) domain: _____________
(1 pt) range: _____________
(1 pt) table
x | y
(2 pts) graph grid

Sujets liés

mathematicscalculuswith chart, calculationhigh schoolturns-1

Questions liées

Sovi AI iOS

Site officiel : mysovi.ai. Les pages de questions sont servies sur question-banks.mysovi.ai. L’app iOS est disponible sur l’App Store Apple.

Télécharger sur l'App Store Catégorie: Calcul