graph: $f(x) = -sqrt{x}$ step 1: evaluate the function to find three po…
The table is filled as above, and the graph is a curve passing through \((0,0)\), \((1,-1)\) and \((4,-2)\) with the domain \(x\geq0\) and decreasing for \(x\geq0\).
The table is filled as above, and the graph is a curve passing through \((0,0)\), \((1,-1)\) and \((4,-2)\) with the domain \(x\geq0\) and decreasing for \(x\geq0\).
graph: $f(x) = -sqrt{x}$
step 1: evaluate the function to find three points.
$f(0) = 0$
$f(1) = -1$
$f(4) = -2$
step 2: plot the points (0, 0), (1, -1), and (4, -2).
graph: $f(x) = -sqrt{x}$
step 1: evaluate the function to find three points.
$f(0) = 0$
$f(1) = -1$
$f(4) = -2$
step 2: plot the points (0, 0), (1, -1), and (4, -2).
We have the points \((0,0)\), \((1, - 1)\) and \((4,-2)\) from evaluating the function \(f(x)=-\sqrt{x}\). So in the table, when \(x = 0\), \(y=0\); when \(x = 1\), \(y=-1\); when \(x = 4\), \(y = - 2\).
| \(x\) | \(y\) |
|-------|-------|
| \(0\) | \(0\) |
| \(1\) | \(-1\) |
| \(4\) | \(-2\) |
After plotting the points \((0,0)\), \((1,-1)\) and \((4, - 2)\), we draw a smooth curve passing through these points. The domain of \(f(x)=-\sqrt{x}\) is \(x\geq0\), and as \(x\) increases, \(y =-\sqrt{x}\) decreases (since the square - root function \(\sqrt{x}\) is increasing for \(x\geq0\) and we have a negative sign in front). The graph starts at the origin \((0,0)\) and moves downwards to the right, getting closer to the negative \(y\) - axis as \(x\) increases.
The table is filled as above, and the graph is a curve passing through \((0,0)\), \((1,-1)\) and \((4,-2)\) with the domain \(x\geq0\) and decreasing for \(x\geq0\).
We have the points \((0,0)\), \((1, - 1)\) and \((4,-2)\) from evaluating the function \(f(x)=-\sqrt{x}\). So in the table, when \(x = 0\), \(y=0\); when \(x = 1\), \(y=-1\); when \(x = 4\), \(y = - 2\).
| \(x\) | \(y\) |
|-------|-------|
| \(0\) | \(0\) |
| \(1\) | \(-1\) |
| \(4\) | \(-2\) |
After plotting the points \((0,0)\), \((1,-1)\) and \((4, - 2)\), we draw a smooth curve passing through these points. The domain of \(f(x)=-\sqrt{x}\) is \(x\geq0\), and as \(x\) increases, \(y =-\sqrt{x}\) decreases (since the square - root function \(\sqrt{x}\) is increasing for \(x\geq0\) and we have a negative sign in front). The graph starts at the origin \((0,0)\) and moves downwards to the right, getting closer to the negative \(y\) - axis as \(x\) increases.
The table is filled as above, and the graph is a curve passing through \((0,0)\), \((1,-1)\) and \((4,-2)\) with the domain \(x\geq0\) and decreasing for \(x\geq0\).
graph: $f(x) = -sqrt{x}$
step 1: evaluate the function to find three points.
$f(0) = 0$
$f(1) = -1$
$f(4) = -2$
step 2: plot the points (0, 0), (1, -1), and (4, -2).
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
\( 2 \) ### Problem 2: \( v = -\frac{1}{x - 2} \); \([-3, -2]\)
2 ### Problem 2: \( v = -\frac{1}{x - 2} \); \([-3, -2]\)
Site officiel : mysovi.ai. Les pages de questions sont servies sur question-banks.mysovi.ai. L’app iOS est disponible sur l’App Store Apple.
Télécharger sur l'App Store Catégorie: Calcul