Sovi AI

Sovi AI

Foto-Fragenhilfe

fill in each blank give the following information: given the table belo…

a) $y=3-\frac{20}{x+5}$ b) $y=\frac{1}{x-4}$ (any non-zero numerator constant is valid)

Kategorie: calculus Aktualisiert: 2026-02-09

Aufgabe

fill in each blank give the following information:
given the table below, write a possible equation for the function. 3 points
| x | -100 | -50 | -10 | -6 | -5 | -4 | -3 | 5 | 50 | 100 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| y | 3.21 | 3.44 | 7 | 23 | error | -17 | -7 | 1 | 2.63 | 2.81 |
write an equation for a rational function which has a v.a at $x=4$ and a h.a at $y=0$. 2 points
a) ______
b) ______

Lösungsschritte

  1. Understand the question

    fill in each blank give the following information:
    given the table below, write a possible equation for the function. 3 points
    | x | -100 | -50 | -10 | -6 | -5 | -4 | -3 | 5 | 50 | 100 |
    | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
    | y | 3.21 | 3.44 | 7 | 23 | error | -17 | -7 | 1 | 2.63 | 2.81 |
    write an equation for a rational function which has a v.a at $x=4$ and a h.a at $y=0$. 2 points
    a) ______
    b) ______

  2. Explanation

    Step1: Identify vertical asymptote

    From the table, there is an error at $x=-5$, so the denominator has a factor of $(x+5)$.

    Step2: Identify horizontal asymptote

    As $x\to\pm\infty$, $y$ approaches 3. So the degrees of numerator and denominator are equal, and the leading coefficient ratio is 3. Let the function be $y=3+\frac{k}{x+5}$.

    Step3: Solve for k using a point

    Use $x=-4, y=-17$:
    $-17=3+\frac{k}{-4+5}$
    $-17=3+k$
    $k=-20$

    Step4: Verify with another point

    Check $x=-6, y=23$:
    $y=3+\frac{-20}{-6+5}=3+20=23$, which matches.

    Step5: Write equation for VA/HA

    For vertical asymptote $x=4$ and horizontal asymptote $y=0$, the rational function has denominator $(x-4)$ and numerator of lower degree. A simple form is $y=\frac{a}{x-4}$ (any non-zero $a$ works, e.g., $a=1$).

  3. Final answer

    a) $y=3-\frac{20}{x+5}$
    b) $y=\frac{1}{x-4}$ (any non-zero numerator constant is valid)

Antwort

Explanation

Step1: Identify vertical asymptote

From the table, there is an error at $x=-5$, so the denominator has a factor of $(x+5)$.

Step2: Identify horizontal asymptote

As $x\to\pm\infty$, $y$ approaches 3. So the degrees of numerator and denominator are equal, and the leading coefficient ratio is 3. Let the function be $y=3+\frac{k}{x+5}$.

Step3: Solve for k using a point

Use $x=-4, y=-17$:
$-17=3+\frac{k}{-4+5}$
$-17=3+k$
$k=-20$

Step4: Verify with another point

Check $x=-6, y=23$:
$y=3+\frac{-20}{-6+5}=3+20=23$, which matches.

Step5: Write equation for VA/HA

For vertical asymptote $x=4$ and horizontal asymptote $y=0$, the rational function has denominator $(x-4)$ and numerator of lower degree. A simple form is $y=\frac{a}{x-4}$ (any non-zero $a$ works, e.g., $a=1$).

Answer

a) $y=3-\frac{20}{x+5}$
b) $y=\frac{1}{x-4}$ (any non-zero numerator constant is valid)

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type with chart, calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T20:23:09

OCR Text

Show OCR extraction
fill in each blank give the following information:
given the table below, write a possible equation for the function. 3 points
| x | -100 | -50 | -10 | -6 | -5 | -4 | -3 | 5 | 50 | 100 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| y | 3.21 | 3.44 | 7 | 23 | error | -17 | -7 | 1 | 2.63 | 2.81 |
write an equation for a rational function which has a v.a at $x=4$ and a h.a at $y=0$. 2 points
a) ______
b) ______

Verwandte Themen

mathematicscalculuswith chart, calculationhigh schoolturns-1

Ähnliche Fragen

Sovi AI iOS

Offizielle Website: mysovi.ai. Frage-Seiten laufen auf question-banks.mysovi.ai. Die iOS-App ist im Apple App Store verfügbar.

Im App Store laden Kategorie: Analysis