Sovi AI

Sovi AI

Foto-Fragenhilfe

factor: $8 + x^3$ a $(2+x)(4-2x+x^2)$ b $(2+x)^3$ c $(2-x)(4+2x+x^2)$ d…

A. $(2+x)(4-2x+x^2)$

Kategorie: algebra Aktualisiert: 2026-02-09

Aufgabe

factor: $8 + x^3$
a $(2+x)(4-2x+x^2)$
b $(2+x)^3$
c $(2-x)(4+2x+x^2)$
d $(2+x)(4+x^2)$
$a^2 + 2ab + b^2=(a+b)^2$
$a^2 - 2ab + b^2=(a-b)^2$
$a^3 + b^3=(a+b)(a^2 - ab + b^2)$
$a^3 - b^3=(a-b)(a^2 + ab + b^2)$

Lösungsschritte

  1. Understand the question

    factor: $8 + x^3$
    a $(2+x)(4-2x+x^2)$
    b $(2+x)^3$
    c $(2-x)(4+2x+x^2)$
    d $(2+x)(4+x^2)$
    $a^2 + 2ab + b^2=(a+b)^2$
    $a^2 - 2ab + b^2=(a-b)^2$
    $a^3 + b^3=(a+b)(a^2 - ab + b^2)$
    $a^3 - b^3=(a-b)(a^2 + ab + b^2)$

  2. Explanation

    Step1: Identify sum of cubes

    $8+x^3 = 2^3 + x^3$

    Step2: Apply sum of cubes formula

    Use $a^3+b^3=(a+b)(a^2-ab+b^2)$ where $a=2, b=x$:
    $\begin{align*}
    2^3+x^3&=(2+x)(2^2 - 2x + x^2)\\
    &=(2+x)(4-2x+x^2)
    \end{align*}$

  3. Final answer

    A. $(2+x)(4-2x+x^2)$

Antwort

Explanation

Step1: Identify sum of cubes

$8+x^3 = 2^3 + x^3$

Step2: Apply sum of cubes formula

Use $a^3+b^3=(a+b)(a^2-ab+b^2)$ where $a=2, b=x$:
$\begin{align*}
2^3+x^3&=(2+x)(2^2 - 2x + x^2)\\
&=(2+x)(4-2x+x^2)
\end{align*}$

Answer

A. $(2+x)(4-2x+x^2)$

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject algebra
Education Level high school
Difficulty unspecified
Question Type multiple choice, calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T19:50:19

OCR Text

Show OCR extraction
factor: $8 + x^3$
a $(2+x)(4-2x+x^2)$
b $(2+x)^3$
c $(2-x)(4+2x+x^2)$
d $(2+x)(4+x^2)$
$a^2 + 2ab + b^2=(a+b)^2$
$a^2 - 2ab + b^2=(a-b)^2$
$a^3 + b^3=(a+b)(a^2 - ab + b^2)$
$a^3 - b^3=(a-b)(a^2 + ab + b^2)$

Verwandte Themen

mathematicsalgebramultiple choice, calculationhigh schoolturns-1

Ähnliche Fragen

Sovi AI iOS

Offizielle Website: mysovi.ai. Frage-Seiten laufen auf question-banks.mysovi.ai. Die iOS-App ist im Apple App Store verfügbar.

Im App Store laden Kategorie: Algebra