Sovi AI

Sovi AI

Foto-Fragenhilfe

3. jovan is building a fort in his backyard using a 10 - foot board. he…

# Explicación: ## Paso 1: Definir el triángulo para el problema 3 El tablero es la hipotenusa ($c=10$ pies), la distancia desde la base del muro es un cateto ($a=6$ pies). Usamos …

Kategorie: algebra Aktualisiert: 2026-02-08

Aufgabe

  1. jovan is building a fort in his backyard using a 10 - foot board. he leans the base of the board 6 feet away from the base of the wall. how high will the board be able to reach up the wall? if necessary, round to the nearest tenth.
  2. alpia biked 1 mile north from her home to the museum. she then biked 2 miles east from the museum to her friend’s house. how far will she bike in miles if she bikes home from her friend’s house in a straight line? if necessary, round to the nearest tenth.

Lösungsschritte

  1. Understand the question
    1. jovan is building a fort in his backyard using a 10 - foot board. he leans the base of the board 6 feet away from the base of the wall. how high will the board be able to reach up the wall? if necessary, round to the nearest tenth.
    2. alpia biked 1 mile north from her home to the museum. she then biked 2 miles east from the museum to her friend’s house. how far will she bike in miles if she bikes home from her friend’s house in a straight line? if necessary, round to the nearest tenth.
  2. Response

    Explicación:

    Paso 1: Definir el triángulo para el problema 3

    El tablero es la hipotenusa ($c=10$ pies), la distancia desde la base del muro es un cateto ($a=6$ pies). Usamos el teorema de Pitágoras $c^2=a^2+b^2$ para encontrar la altura $b$.
    $$10^2 = 6^2 + b^2$$

    Paso 2: Calcular $b$ para el problema 3

    Despejar $b$ y resolver:
    $$b = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8$$

    Paso 3: Definir el triángulo para el problema 4

    Los recorridos forman catetos: $a=1$ milla (norte), $b=2$ millas (este). La ruta directa es la hipotenusa $c$.
    $$c^2 = 1^2 + 2^2$$

    Paso 4: Calcular $c$ para el problema 4

    Resolver y redondear al décimo más cercano:
    $$c = \sqrt{1^2 + 2^2} = \sqrt{1 + 4} = \sqrt{5} \approx 2.2$$

    Respuesta:

    1. Para el problema 3: 8.0 pies
    2. Para el problema 4: 2.2 millas
  3. Final answer

    Explicación:

    Paso 1: Definir el triángulo para el problema 3

    El tablero es la hipotenusa ($c=10$ pies), la distancia desde la base del muro es un cateto ($a=6$ pies). Usamos el teorema de Pitágoras $c^2=a^2+b^2$ para encontrar la altura $b$.
    $$10^2 = 6^2 + b^2$$

    Paso 2: Calcular $b$ para el problema 3

    Despejar $b$ y resolver:
    $$b = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8$$

    Paso 3: Definir el triángulo para el problema 4

    Los recorridos forman catetos: $a=1$ milla (norte), $b=2$ millas (este). La ruta directa es la hipotenusa $c$.
    $$c^2 = 1^2 + 2^2$$

    Paso 4: Calcular $c$ para el problema 4

    Resolver y redondear al décimo más cercano:
    $$c = \sqrt{1^2 + 2^2} = \sqrt{1 + 4} = \sqrt{5} \approx 2.2$$

    Respuesta:

    1. Para el problema 3: 8.0 pies
    2. Para el problema 4: 2.2 millas

Antwort

Explicación:

Paso 1: Definir el triángulo para el problema 3

El tablero es la hipotenusa ($c=10$ pies), la distancia desde la base del muro es un cateto ($a=6$ pies). Usamos el teorema de Pitágoras $c^2=a^2+b^2$ para encontrar la altura $b$.
$$10^2 = 6^2 + b^2$$

Paso 2: Calcular $b$ para el problema 3

Despejar $b$ y resolver:
$$b = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8$$

Paso 3: Definir el triángulo para el problema 4

Los recorridos forman catetos: $a=1$ milla (norte), $b=2$ millas (este). La ruta directa es la hipotenusa $c$.
$$c^2 = 1^2 + 2^2$$

Paso 4: Calcular $c$ para el problema 4

Resolver y redondear al décimo más cercano:
$$c = \sqrt{1^2 + 2^2} = \sqrt{1 + 4} = \sqrt{5} \approx 2.2$$

Respuesta:

  1. Para el problema 3: 8.0 pies
  2. Para el problema 4: 2.2 millas

Question Image

Click to enlarge

Question Analysis

Subject unspecified
Sub Subject unspecified
Education Level not specified
Difficulty unspecified
Question Type calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-08T03:58:57

OCR Text

Show OCR extraction
3. jovan is building a fort in his backyard using a 10 - foot board. he leans the base of the board 6 feet away from the base of the wall. how high will the board be able to reach up the wall? if necessary, round to the nearest tenth.
4. alpia biked 1 mile north from her home to the museum. she then biked 2 miles east from the museum to her friend’s house. how far will she bike in miles if she bikes home from her friend’s house in a straight line? if necessary, round to the nearest tenth.

Verwandte Themen

unspecifiedcalculationnot specifiedliked-answerturns-1

Ähnliche Fragen

Sovi AI iOS

Offizielle Website: mysovi.ai. Frage-Seiten laufen auf question-banks.mysovi.ai. Die iOS-App ist im Apple App Store verfügbar.

Im App Store laden Kategorie: Algebra