Sovi AI

Sovi AI

Foto-Fragenhilfe

kuta software - infinite calculus name_____________________________ ave…

2 ### Problem 2: \( v = -\frac{1}{x - 2} \); \([-3, -2]\)

Kategorie: calculus Aktualisiert: 2026-02-06

Aufgabe

kuta software - infinite calculus
name_____________________________
average rates of change
date____________ period__
for each problem, find the average rate of change of the function over the given interval.

  1. ( y = x^2 - x + 1 ); ( 0, 3 )
  2. ( v = -dfrac{1}{x - 2} ); ( -3, -2 )

Lösungsschritte

  1. Understand the question

    kuta software - infinite calculus
    name_____________________________
    average rates of change
    date____________ period__
    for each problem, find the average rate of change of the function over the given interval.

    1. ( y = x^2 - x + 1 ); ( 0, 3 )
    2. ( v = -dfrac{1}{x - 2} ); ( -3, -2 )
  2. Response
    Problem 1: \( y = x^2 - x + 1 \); \([0, 3]\)
  3. Explanation

    Step 1: Recall the average rate of change formula

    The average rate of change of a function \( y = f(x) \) over the interval \([a, b]\) is given by \(\frac{f(b) - f(a)}{b - a}\). Here, \( a = 0 \), \( b = 3 \), and \( f(x) = x^2 - x + 1 \).

    Step 2: Calculate \( f(0) \)

    Substitute \( x = 0 \) into \( f(x) \):
    \( f(0) = (0)^2 - 0 + 1 = 1 \).

    Step 3: Calculate \( f(3) \)

    Substitute \( x = 3 \) into \( f(x) \):
    \( f(3) = (3)^2 - 3 + 1 = 9 - 3 + 1 = 7 \).

    Step 4: Apply the average rate of change formula

    Using \(\frac{f(3) - f(0)}{3 - 0}\), substitute the values:
    \(\frac{7 - 1}{3 - 0} = \frac{6}{3} = 2\).

  4. Explanation

    Step 1: Recall the average rate of change formula

    The average rate of change of a function \( v = f(x) \) over \([a, b]\) is \(\frac{f(b) - f(a)}{b - a}\). Here, \( a = -3 \), \( b = -2 \), and \( f(x) = -\frac{1}{x - 2} \).

    Step 2: Calculate \( f(-3) \)

    Substitute \( x = -3 \) into \( f(x) \):
    \( f(-3) = -\frac{1}{-3 - 2} = -\frac{1}{-5} = \frac{1}{5} \).

    Step 3: Calculate \( f(-2) \)

    Substitute \( x = -2 \) into \( f(x) \):
    \( f(-2) = -\frac{1}{-2 - 2} = -\frac{1}{-4} = \frac{1}{4} \).

    Step 4: Apply the average rate of change formula

    Using \(\frac{f(-2) - f(-3)}{-2 - (-3)}\), substitute the values:
    First, simplify the denominator: \( -2 - (-3) = -2 + 3 = 1 \).
    Then, the numerator: \( \frac{1}{4} - \frac{1}{5} = \frac{5 - 4}{20} = \frac{1}{20} \).
    Thus, \(\frac{\frac{1}{20}}{1} = \frac{1}{20}\).

  5. Final answer

    2

    Problem 2: \( v = -\frac{1}{x - 2} \); \([-3, -2]\)

Antwort

Response

Problem 1: \( y = x^2 - x + 1 \); \([0, 3]\)

Explanation

Step 1: Recall the average rate of change formula

The average rate of change of a function \( y = f(x) \) over the interval \([a, b]\) is given by \(\frac{f(b) - f(a)}{b - a}\). Here, \( a = 0 \), \( b = 3 \), and \( f(x) = x^2 - x + 1 \).

Step 2: Calculate \( f(0) \)

Substitute \( x = 0 \) into \( f(x) \):
\( f(0) = (0)^2 - 0 + 1 = 1 \).

Step 3: Calculate \( f(3) \)

Substitute \( x = 3 \) into \( f(x) \):
\( f(3) = (3)^2 - 3 + 1 = 9 - 3 + 1 = 7 \).

Step 4: Apply the average rate of change formula

Using \(\frac{f(3) - f(0)}{3 - 0}\), substitute the values:
\(\frac{7 - 1}{3 - 0} = \frac{6}{3} = 2\).

Answer

2

Problem 2: \( v = -\frac{1}{x - 2} \); \([-3, -2]\)

Explanation

Step 1: Recall the average rate of change formula

The average rate of change of a function \( v = f(x) \) over \([a, b]\) is \(\frac{f(b) - f(a)}{b - a}\). Here, \( a = -3 \), \( b = -2 \), and \( f(x) = -\frac{1}{x - 2} \).

Step 2: Calculate \( f(-3) \)

Substitute \( x = -3 \) into \( f(x) \):
\( f(-3) = -\frac{1}{-3 - 2} = -\frac{1}{-5} = \frac{1}{5} \).

Step 3: Calculate \( f(-2) \)

Substitute \( x = -2 \) into \( f(x) \):
\( f(-2) = -\frac{1}{-2 - 2} = -\frac{1}{-4} = \frac{1}{4} \).

Step 4: Apply the average rate of change formula

Using \(\frac{f(-2) - f(-3)}{-2 - (-3)}\), substitute the values:
First, simplify the denominator: \( -2 - (-3) = -2 + 3 = 1 \).
Then, the numerator: \( \frac{1}{4} - \frac{1}{5} = \frac{5 - 4}{20} = \frac{1}{20} \).
Thus, \(\frac{\frac{1}{20}}{1} = \frac{1}{20}\).

Answer

\(\frac{1}{20}\)

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type with image, calculation, multiple questions
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-06T20:22:47

OCR Text

Show OCR extraction
kuta software - infinite calculus
name_____________________________
average rates of change
date______________ period____
for each problem, find the average rate of change of the function over the given interval.
1) ( y = x^2 - x + 1 ); ( 0, 3 )
2) ( v = -dfrac{1}{x - 2} ); ( -3, -2 )

Verwandte Themen

mathematicscalculuswith image, calculation, multiple questionshigh schoolliked-answerturns-1

Ähnliche Fragen

Sovi AI iOS

Offizielle Website: mysovi.ai. Frage-Seiten laufen auf question-banks.mysovi.ai. Die iOS-App ist im Apple App Store verfügbar.

Im App Store laden Kategorie: Analysis