Sovi AI

Sovi AI

Foto-Fragenhilfe

question 1-6 in $\\triangle jkl$, $m\\angle l = 90^\\circ$. if $\\sin j…

\( 0.6 \)

Kategorie: geometry Aktualisiert: 2026-01-30

Aufgabe

question 1-6
in $\\triangle jkl$, $m\\angle l = 90^\\circ$. if $\\sin j = 0.6$, what is the value of $\\cos k$ to the nearest tenth?
enter the correct answer in the box.

Lösungsschritte

  1. Understand the question

    question 1-6
    in $\\triangle jkl$, $m\\angle l = 90^\\circ$. if $\\sin j = 0.6$, what is the value of $\\cos k$ to the nearest tenth?
    enter the correct answer in the box.

  2. Explanation

    Step1: Analyze the right triangle

    In right triangle \( \triangle JKL \) with \( \angle L = 90^\circ \), the sum of the other two angles \( \angle J \) and \( \angle K \) is \( 90^\circ \) (since the sum of angles in a triangle is \( 180^\circ \), and \( \angle L = 90^\circ \)). So \( \angle J + \angle K = 90^\circ \), which means \( \angle K = 90^\circ - \angle J \).

    Step2: Use the co - function identity

    We know the co - function identity \( \cos(90^\circ - \theta)=\sin\theta \). Let \( \theta=\angle J \), then \( \cos K=\cos(90^\circ - \angle J) \). By the co - function identity, \( \cos(90^\circ - \angle J)=\sin\angle J \).

    Step3: Substitute the given value

    We are given that \( \sin J = 0.6 \). Since \( \cos K=\sin J \), then \( \cos K = 0.6 \).

  3. Final answer

    \( 0.6 \)

Antwort

Explanation

Step1: Analyze the right triangle

In right triangle \( \triangle JKL \) with \( \angle L = 90^\circ \), the sum of the other two angles \( \angle J \) and \( \angle K \) is \( 90^\circ \) (since the sum of angles in a triangle is \( 180^\circ \), and \( \angle L = 90^\circ \)). So \( \angle J + \angle K = 90^\circ \), which means \( \angle K = 90^\circ - \angle J \).

Step2: Use the co - function identity

We know the co - function identity \( \cos(90^\circ - \theta)=\sin\theta \). Let \( \theta=\angle J \), then \( \cos K=\cos(90^\circ - \angle J) \). By the co - function identity, \( \cos(90^\circ - \angle J)=\sin\angle J \).

Step3: Substitute the given value

We are given that \( \sin J = 0.6 \). Since \( \cos K=\sin J \), then \( \cos K = 0.6 \).

Answer

\( 0.6 \)

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject geometry
Education Level high school
Difficulty unspecified
Question Type calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-01-30T12:04:45

OCR Text

Show OCR extraction
question 1-6
in $\\triangle jkl$, $m\\angle l = 90^\\circ$. if $\\sin j = 0.6$, what is the value of $\\cos k$ to the nearest tenth?
enter the correct answer in the box.

Verwandte Themen

mathematicsgeometrycalculationhigh schoolliked-answerturns-1

Ähnliche Fragen

Sovi AI iOS

Offizielle Website: mysovi.ai. Frage-Seiten laufen auf question-banks.mysovi.ai. Die iOS-App ist im Apple App Store verfügbar.

Im App Store laden Kategorie: Geometrie